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A model is suggested to treat nematic block copolymers with mesogenic groups in the main chains. It is 
based on a mean-field approach taking into account attractive interactions between chain segments, and 
allows the description of chains with varying flexibility (with somewhat flexible mesogens). The free energy 
is calculated; it yields the behaviour of the temperature-dependent nematic-isotropic phase transition in 
the system for various sets of parameters (concentration of the two components and constants of anisotropic 
interaction). 
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INTRODUCTION 

Liquid-crystalline ordering in block copolymers was 
previously treated by many workers t-7. A system 
of polymer chains containing stiff mesogenic groups 
(Figure la) was considered by most of them using various 
lattice models ~-5. It has been shown, however, that an 
alternative approach might be better for special kinds 
of structures (with mesogenic units having a weaker 
anisotropy of shape and stronger attractive interactions 
between chain segments)6'7; it is based on a mean-field 
approximation (of the Maier-Saupe type) and leads to 
somewhat different results for the systems in question. 

On the other hand, there is experimental evidence that 
the properties of liquid-crystalline block copolymers can 
depend on the particular chemistry of the mesogenic 
groups (how stiff they actually are). For example, the 
dynamic experiments by Ungar et al. s give values of the 
nematic-isotropic phase transition temperature TN~ that 
increase with the heating rate, and this dependence is 
much more dramatic in the case of stiffer mesogenic 
groups. 

In another set of experiments the reduction of the phase 
transition temperature is observed with increase in the 
concentration ~ of flexible spacers 9. The tendency of TN~ 
at ~b--> 1 might allow one to 'extract' nematic quality of 
the alkyl spacers using an appropriate model for the 
copolymer. The authors conclude that it suggests the 
presence of a virtual mesophase in polyethylene, which 
was previously theoretically predicted t°. The shape of 
the TN~(q$) dependence also proves to be sensitive to the 
particularities of the chain geometry and to the relative 
values of orientational interactions between the chain 
segments. 

Therefore, a theoretical model is proposed below to 
describe some real chemical structures. Namely, we 
consider polymer chains of varying flexibility containing 
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stiffer and less stiff units (Figure lb), i.e. segments of the 
types 1 and 2. A mean-field approximation is used, and 
a path-integral technique is involved to obtain the 
free energy of the system. The equilibrium temperature 
dependence of order parameters is plotted. The phase 
transition temperature is found to be altered by the 
relative concentration of stiff and flexible fractions and 
by anisotropic interactions between the chain segments. 

MODEL AND METHODS 

Thus a melt of worm-like block copolymer chains of the 
sort shown in Figure lb is treated here. Let q be the 
curvilinear coordinate along the chain; a tangent vector 
t(q) can be introduced at any point. Then, according to 
a mean-field approach 11, an elementary part of the 
chain, dq, feels the influence of a certain orientational 
field caused by all surrounding chain segments. The 
corresponding orientational energy dH, in general, would 
depend on the direction t of the given part dq and would 

a) 

b) 

Figure 1 Block copolymer chains: (a) stiff mesogenic groups; (b) more 
flexible mesogens 
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also be proportional to the average order parameter of 
the melt: 

dH = - Vs(q)n dq 

s(q) = P2(n, t) = [3(n.t) 2 - 1]/2 (1) 

~I = ( P 2(n.t) > 

(angle brackets mean the average taken over all directions 
of the chain segments and over all chains in the melt). 
Here n is the director, and V i s a  constant of attractive 
interactions. 

Actually, there are three different constants (Vll, 1/12 
and V22) in the case in question; they describe interactions 
between segments of the two different types (1-1, 1-2 and 
2-2 interactions; see Figure lb). Moreover, two different 
order parameters (~h and r/2) should be involved to 
characterize nematic ordering in the system (i.e. the order 
parameters for the stiffer and the less stiff fraction 
separately). Obviously, we introduce two different Kuhn 
lengths (l 1 and /2) at the same time and the total 
segment lengths a and b of the more flexible and stiffer 
components. Based on equation (1) and including the 
elastic bending energy of a worm-like chain (proportional 
to (Ot/t~q)2), one can get the following Hamiltonian for 
the ith chain segment: 

[~ i(a + b) - t}lkb 

H~k -- I [ -- 2 Ts(q)gk/3 + Ik T(~t/~q) 2] dq 
- -  ,J (i - 1)(a + b) + ~2ka 

(2) 

with 

gk = 3(Vlkarll + V2kbrl2)/[2(a + b)T] 

1112 = V2~, Tis temperature (in the units of energy), and 
k = 1 or k--2 depending on the sort of segment under 
consideration. 

If U is the total energy per chain, i.e. 

U = E  H i  k 
i 

then, quite similarly to ref. 12, the free energy of the 
system will be equal to: 

F =  - N ( U ) / 2 - N T l n  Z 

= Nm(V~ ~ a2r121 + 2 V 12 abt/1 r]2 + V22b2r12)/(a + b ) -  NTln Z 

(3) 

where N is the number of chains in a melt, (2m) is the 
total number of segments in a chain, and 

Z =  d t l . . . d t 2 r a + l  I - [  G l ( t i - l ,  t i )G2( t i ,  t i+ l)  
i=1  

(4) 

Gk(t,_ 1, tl) = j- exp( -- H,k/T) Dt,(q) 

with Hik determined by equation (2). The Gk can be 
thought of as propagators for the tangent vector along 
a segment of type k. 

Thus equation (3) could be used to calculate the free 
energy of the melt. In order to find the equilibrium state 
of the system, a set of minimizing equations: 

aF/~n 1 = 0 a F / a n 2  = 0 (5) 

should be solved. Regarding temperature as a parameter, 
we can find from here the equilibrium temperature 
dependence of r/x and r/2. 

It is possible to write an analytical formula for the 
free energy if we resort to the so-called spherical 
approximation 13. It is based on the assumption that the 
magnitude of the tangent vector t can vary from point 
to point (i.e. it is not necessarily equal to unity); but the 
essential requirement is that its average value should still 
be equal to unity (the average is taken over all directions 
of a segment and then along the chain). It means that 
we allow for a finite rigidity of chain segments or, in 
other words, for a certain variation in their lengths. At 
this point we depart in our treatment of worm-like 
chains from Wang and Warner 14, who also consider 
mean-field coupling, but calculate the free energy using 
an eigenfunction expansion of (2). 

This additional restriction for the tangent vector allows 
the path integrals (4) be reduced to the well known 
harmonic oscillator type. In this case the Hamiltonian 
Hik given by equation (2) should be replaced by the 
modified Hamiltonian Hik (refs. 6, 7): 

Hik = Hik + #k T f [ t2 (q )  - -  1] dq 

where ,u k is a Lagrangean multiplier. 
Substituting this into the formula for the propagators, 

equation (4), we come to the following: 
3 

Gk(ti, ti +1) = exp[(#k -- gk/a)dk] I~ 
~t=l 

x f exp(-- lk f [OgE~lzE~ + (~tiJC3q'2] dq/2) Dt~(q) 

(6) 

with oJE~=2(ltk--6~agk)/lk, k=l ,2 ;  dz=a, dE=b; and 
ct = 1, 2, 3 corresponding to x, y and z components of t. 
These are already integrals, which can be calculated 
exactlylS; the ~th factor in the product is equal to: 

{O)kat 1k/[21 r sinh(f.Ok~ dk)] } 1/2 exp { - [(2)ka t lk/2 tanh(egk~ dk) ] 

× [ ( t J  2 + (tl + 1,~)2] + [egkflk/Sinh(e)k~dk)](ti,~t i + 1,~)} 

TO evaluate the function Z given by equation (4), 
with the propagators (6), we transform to Cartesian 
coordinates. Finally, the second term in equation (3) can 
be written as: 

In Z = 2m[(/q - gl/3)a + (#2 - gE/3)b - (colx + ~o 1=/2) 

x a - (co2x + 092=/2)b ] + (2m-  1)[ln(mlfll) 

+ ½ In(e91=/1) + ln(COExl2) + ½ In(co2=/2) - 2 ln(COlxl 1 

+ o92fl2) - ln(o91fll + m:=12)] 

Equations (5) together with these below: 

aF/a#l = 0 aF/a~,2 = 0 (7) 

yield a set of four simultaneous equations with four 
variables (t/l, ~/2, #1 and #2), which determine the 
equilibrium behaviour of the system. These equations are: 

[1 - (2x~)- 1/2 _ 0.5(2yk)- 1/2]dk/l~ + [(2m -- 1)/(2m)] 

X { 1 I x  k - -  1 / ( 2 y k ) -  2 ( X k ) -  1/2/[(X1)1/2 JC (X2) 1/2]  

--(Yk)- 112f[(yl)112 + (yE)I/2]} = 0 (8) 

{r/k + 0.511 -- 1.5(2yk)- 1/2J}dk/l k -- 0.375(yk)- 1/2 

x [(2m-- 1)/(2m)J[(yx)- 1/2 _~_ ( Y 2 ) -  1/2 - -  0 .5(yk)  - 1/2]  = 0 

where k = 1, 2, Yk = ( ~ k -  gk/3)lk, Xk = #klk and gk is defined 
in equations (2). 
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RESULTS AND DISCUSSION 

The number of model parameters can be easily reduced 
to five namely f l l=V12/Vl l ,  f12=V22/Vll, a/b, 12/l 1 
and e = ( 2 m - 1 ) / 2 m .  Equations (8) have been treated 
numerically for various sets of parameters; some results 
are shown in Figures 2-4. 

Some features of the phase transition are likely to 
depend on the total molecular weight M of polymer 
chains (or degree of polymerization). Evidently, M ~ m, 
and, as can be seen from equations (8), this dependence 
is entirely determined by the factor e-- ( 2 m -  1)/2m, which 
does not change noticeably if m>>l. Therefore, the 
influence of the molecular weight is fairly slight and would 
be better expressed for shorter chains (this conclusion 
agrees with experimentsS'9). 

In Figure 2 two curves are compared. They are the 
temperature dependence of the order parameter ~/for a 
melt of worm-like uniform chains (/a=/2, a = b  and 
1/11 = 1,'12 = V22) and for a melt of block copolymer chains 
with slightly different segments (12/ll = 0.9). In the latter 
case the two order parameters can be hardly differentiated 
as they are nearly equal to each other, ~h ~r/2, because 
the difference in the segments' stiffness and in their 
interaction is not essential. But still certain changes in 
the behaviour of the system can be noticed: while some 
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Figure 2 The temperature dependence of the order parameter r/: 
curve 1, uniform flexible chain; curve 2, chain containing slightly 
different segments, a/ll = b/12 = 10, IJll = 0.9, II11 = 0.9 V 12, V22 = II12; 
in this case rh ~r/2 
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Figure 3 The phase t rans i t ion  values o f  the order  parameters (~h,, r/2t ) 
and dimensionless temperature z t versus concentration ~b of stiffer 
s e g m e n t s ; $ = a / ( a + b ) , b / 1 2 =  lO,12/l 1 =0.5, Vll =0.8 II12, V12 =0.9 V22 
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Figure 4 The phase transition temperature z, depending on: (a) the 
ratio 12/l 1 of the block copolymer Kuhn lengths, aft2 --- 20; (b) the fraction 
of stiffer segments q~---a/(a+b); 1~/11=0.5. For both curves b/12=20 , 
Vlt= V22 and V12=0 

of the chain segments are getting stiffer (11 is increased), 
the order parameter at the phase transition point becomes 
somewhat higher; the transition temperature, however, 
slightly reduces. The values of interaction parameters, V, 
in this case are nearly the same. 

In Figure 3 the values of order parameters and of 
dimensionless temperature z = T/(3 VI 1 ll) at the transition 
are plotted versus the concentration of stiffer groups. The 
ratio of the Kuhn lengths is now equal to 0.5. It can be 
seen that transition temperature zt increases with the 
concentration of the stiffer fraction, whereas both order 
parameters r h and ~/2 slightly decrease and then become 
nearly constant for higher values of ~o. In this case 
attractive interactions between the stiffer groups are 
slightly less than those between the more flexible 
segments: V~ ~ <. V22. 

Figure 4a shows that dependence of the phase transition 
temperature on the ratio 12/ll is sharper for lower values 
of this ratio (i.e. in the case when segments of the two 
sorts are of essentially different stiffness). 

It could be interesting to look at the effect of coupling. 
If the mutual interaction, modelled by V~2 and coupled 
to the Kuhn segment lengths via their geometric mean 
(l~12) ~/2, is lower than the effective self-interactions V~ ~l~ 
and V22l 2, then at intermediate concentrations, when 1-2  
interactions are significant, we may expect to observe a 
minimum in the transition temperature. This appears in 
Figure 4b. Both Figures 4a and 4b describe the limiting 
case when the segments of the two different sorts do not 
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interact at all (V12 = 0) .  This means that nematic ordering 
of the flexible fraction would be only caused by binding 
of the segments combined together in polymer chains 
(and not by their orientational interactions with mesogens). 
The less the 12/11 ratio, the more noticeable this effect can 
be. These results are confirmed by experiments 9. 
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